1 (i) Express $x^{2}-5 x+6$ in the form $(x-a)^{2}-b$. Hence state the coordinates of the turning point of the curve $y=x^{2}-5 x+6$
(ii) Find the coordinates of the intersections of the curve $y=x^{2}-5 x+6$ with the axes and sketch this curve.
(iii) Solve the simultaneous equations $y=x^{2}-5 x+6$ and $x+y=2$. Hence show that the line $x+y=2$ is a tangent to the curve $y=x^{2}-5 x+6$ at one of the points where the curve intersects the axes. [4]

Fig. 12
Fig. 12 shows the graph of $y=\frac{1}{x-3}$.
(i) Draw accurately, on the copy of Fig. 12, the graph of $y=x^{2}-4 x+1$ for $-1 \leqslant x \leqslant 5$. Use your graph to estimate the coordinates of the intersections of $y=\frac{1}{x-3}$ and $y=x^{2}-4 x+1$.
(ii) Show algebraically that, where the curves intersect, $x^{3}-7 x^{2}+13 x-4=0$.
(iii) Use the fact that $x=4$ is a root of $x^{3}-7 x^{2}+13 x-4=0$ to find a quadratic factor of $x^{3}-7 x^{2}+13 x-4$. Hence find the exact values of the other two roots of this equation. [5]

3 (i) Find algebraically the coordinates of the points of intersection of the curve $y=4 x^{2}+24 x+31$ and the line $x+y=10$.
(ii) Express $4 x^{2}+24 x+31$ in the form $a(x+b)^{2}+c$.
(iii) For the curve $y=4 x^{2}+24 x+31$,
(A) write down the equation of the line of symmetry,
(B) write down the minimum y-value on the curve.

4 (i) Solve, by factorising, the equation $2 x^{2}-x-3=0$.
(ii) Sketch the graph of $y=2 x^{2}-x-3$.
(iii) Show that the equation $x^{2}-5 x+10=0$ has no real roots.
(iv) Find the x-coordinates of the points of intersection of the graphs of $y=2 x^{2}-x-3$ and $y=x^{2}-5 x+10$. Give your answer in the form $a \pm \sqrt{b}$.

