- 1 (i) Express $x^2 5x + 6$ in the form $(x a)^2 b$. Hence state the coordinates of the turning point of the curve $y = x^2 5x + 6$. [4]
 - (ii) Find the coordinates of the intersections of the curve $y = x^2 5x + 6$ with the axes and sketch this curve. [4]
 - (iii) Solve the simultaneous equations $y = x^2 5x + 6$ and x + y = 2. Hence show that the line x + y = 2 is a tangent to the curve $y = x^2 5x + 6$ at one of the points where the curve intersects the axes. [4]

2

Fig. 12

Fig. 12 shows the graph of $y = \frac{1}{x-3}$.

- (i) Draw accurately, on the copy of Fig. 12, the graph of $y = x^2 4x + 1$ for $-1 \le x \le 5$. Use your graph to estimate the coordinates of the intersections of $y = \frac{1}{x-3}$ and $y = x^2 4x + 1$. [5]
- (ii) Show algebraically that, where the curves intersect, $x^3 7x^2 + 13x 4 = 0$. [3]

(iii) Use the fact that x = 4 is a root of $x^3 - 7x^2 + 13x - 4 = 0$ to find a quadratic factor of $x^3 - 7x^2 + 13x - 4$. Hence find the exact values of the other two roots of this equation. [5]

3	(i) Find algebraically the coordinates of the points of intersection of the curve	$x y = 4x^2 + 24x + 31$
	and the line $x + y = 10$.	[5]

- (ii) Express $4x^2 + 24x + 31$ in the form $a(x+b)^2 + c$. [4]
- (iii) For the curve $y = 4x^2 + 24x + 31$,
 - (*A*) write down the equation of the line of symmetry, [1]
 - (B) write down the minimum y-value on the curve. [1]
- 4 (i) Solve, by factorising, the equation $2x^2 x 3 = 0$. [3]
 - (ii) Sketch the graph of $y = 2x^2 x 3$. [3]

[2]

- (iii) Show that the equation $x^2 5x + 10 = 0$ has no real roots.
- (iv) Find the *x*-coordinates of the points of intersection of the graphs of $y = 2x^2 x 3$ and $y = x^2 5x + 10$. Give your answer in the form $a \pm \sqrt{b}$. [4]